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OPTIMAL VIBRATION REDUCTION OVER A FREQUENCY RANGE

Abstract. This is a review of optimal vibration reduction
techniques for systems subject to harmonic excitation over a
frequency range. Only passive means of control are considered. The
objective functions used for optimization are restricted to those
which relate directly to some measure of frequency response. Other
common optimization goals such as weight minimirzation with response
constraints are not included in this survey.

CONVENTIONAL DYNAMIC VIBRATION ABSORBER

The simplest device used to attenuate the steady-state
vibration of a mechanical system over a frequency range is the
conventional dynamic absordber. In the classical analysis,the main
system is modelled as a mass resonating on a spring (Figure 1). The
absorber is tuned to resonate such that the motion if its mass mz
becomes relatively large and the motion of the main mass m_ is
minimized. The first analysis of the absorber is usually attributed
to Ormondroyd and Den Hartog {l1]. A detailed discussion of optimal
tuning and damping parameters is given in Den Hartog's book {2]. To
write the ,equations of motion in a dimensionless form, the

following s 1ls are introduced
xst - plkl = gtatic displacement of main mass produced by a
force P
£ = m /m = mass ratio = absorber mass/main mass

95- (k1/m1)1<2 = uncoupled natural frequency of main system

wn - (szmz)llz = uncoupled natural fregquency of damper system

(1)
fow /Qh =« ratio of natural frequencies
n
g= w/nn = ratio of the exciting frequency to the
uncoupled natural frequency of main system
cc - 2m2§2n = critical damping
€ = czlcc = damping ratio
zi - xi'xst' (i = 1,2) = displacement ratio
With this notation the equations of motion in the freguency
domain | may be written
(1 - gz)z + ufz(z - 2,.) + J2utg(z, - 2z_,) = 1
1 1l 2 1l 2
(2)

2 2
- g z2 + f (22 - zl) + ng{(z2 zl) 0

- mil"‘
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If A/C = B/D, then z1 becomes equal to A/C which is independent of

damping £. Por fixed 4 and £, the condition A/C = B/D vields a
quadratic equation in qz the two roots of which are the frequencies

9,:9, where the amplitude Izll of the main mass is independent of
damping. The points (gl.lzl(ql)l) and (gz,lzl(qz)l) on the frequency
response curve lzl(g)' are called fixed points or invariant points.
Den Bartog optimizes absorber performance by first choosing £ = wn/

(tuning) so that the fixed points are adjusted to equal height and

then finding the value of £ (optimum damping) to make the frequency
response curve pass through one of the fixed points with a horizontal

tangent. His result for optimum tuning is

.
-l+y, (5)

To find optimum damping for fixed ux, substitute equation (5) into
equation (3), find the derivative of Iz, with respect to g, then
evaluate at one of the fixed points, say g, ., and equate the result
to zero. From the eguation thus obtained, the damping ratio may be

found as

2 (3 = Nufy + 23 :
¢ 8(1 + u)?d (6

On the other hand. if the fixed point chosen is the one at a9, the
resulting damping ratio is given by

2 w(3 ¢ yu/lu & 2))
¢ 8(1 + u)3




Den Hartog recommends the use of the average value

2 —3u

£ =81+ ©) 3 (8)

EXTENSIONS OF THE CONVENTIONAL DYNAMIC ABSORBER

Lewis 3] extended this optimization procedure to multiple
degree-of-freedom, discrete, undamped systems to which a
conventional viscous vibration absorber is attached. For such a
gystem with N masses, Lewis proves the existence of 2N-2 fixed
points. Thus, if the designer selects a resonant peak of primary
interest, the adiacent invariant points in the vicinity of this peak
can be adjusted as described above to obtain optimum tuning and
damping. As a particular case, Lewis analyzes the two-mass system
shown in Figure 2 and shows that the invariant points occur at the
frequencies

. ) K(Ml + MZ + m) . KV2"1¥2W‘“1,+ MZ + m) 0
a,b Ml(M2 + m) 2M1M2(M2 + m)

with optimum tuning given by

2
i m(ZMlM2 + 2%27+ zqzm - Mlm) (10)

2
ZMl(M2 + m)

KIN

and optimum damping by

2 3
cz i K(8M1MZ + 8M27+ 8M2m - Mlﬂ)m a1
3
4(M2 + m) (M1 + Mz + m)

Snowdon [4] modified the conventional absorber by adding a spring
in series with the damper and showed that the resulting device, called
a three-element dynamic absorber, active through a greater frequency
range, reduced transmissibility (absolute value of the ratio of main
mass displacement to the prescribed displacement of a foundation
attached to the main mass by a spring ) more effectively at the center
of this range. In the same paper, Srowdon introduced dual absorbers
to create a pronounced trough in the transmissibility curve while
avoiding the two large compensating resonant peaks that appear in the
transmissibility curve of the single absorber. Snowdon attaches these
absorbers to an undamped single degree—of-freedom system and provides
design information for them in graphical form. Two of his curves have
been reproduced here to show the changes in transmissibility (Figures
3 and 4).




T —— Y

Randall et. al. [5) provided optimum absorber design curves for
primary systems with damping, (Figure 5). They proved that once
damping is introduced into the main system, invariant points no
longer exist. Defining a performance measure G by

G = mgx lxl(w)| (12)

they used a numerical search to compute tuning and damping parameters
that minimize G. Soom and Lee (6] solved the same problem by
nonlinear programming and investigated the possibility of using
nonlinear springs to improve broad band response. They also tried
several different objective functions, for example

2
= ¥ -
Gl 5\Ix1(w) 11) for w such that lxl(w)l > 1

G, = mgx(wlxl(w)l)
(13)
2
5!xl(w)l

Q
]

2
04 = 5 wlxl(w)l

Nonlinearities have also been treated bv Roberson [7] and Arnold
{8). Roberson considered the system shown in Pigure 6 where the
spring between the masses Hl and M_ is nonlinear. Its load-
deflection curve is the sum of a linear and a cubic term. Since the
~taoyber is undamped in this case, its effectiveness is limited to a
small frequency range. Roberson's synthesis criterion is the
maximization of this suppression band. Arnold (8] studied the same
system as Roberson but set ¢ = 0. He provides frquency response
curves of the system for hardening and softening coupling springs as
well as for a softening spring designed according to Roberson's
optimum system—parameter specifications. 1In both (7] and (8] the
restoring force in the nonlinear spring as a function of spring
extension is taken of the form

R(x) = c(x ¢ uzxa) (14)

where the plus sign indicates a hardenin§ spring characteristic and
the minus sign indicates a softening one.

Kwak et. al. {9) and Haug and Arora [10) used a steepest

descent algorithm to solve the classical absorber problem over a
finite frequency range. Their objective function is

G = awszb Izl(w)l (15)




where z is as defined in equation (1) and the freguency interval
of interest is {a,b). Thev minimize G subiect to the constraints

X, - X
23ty | 2—1 (16)

<Q
1 max

< f <
fuin € T € fyay (17)

£ € £ < ¢
.MIN - .MAX (18)

where the notation is as in equation (1). They showed that for
certain finite frequency intervals, designs superior to Den Hartog's
infinite frequency range optimum may be found.

SYSTEMS WITH CONTINUOUS MEMBERS

Plunkett [11) proved the existence of invariant points for
undamped continuous systems to which a single discrete damper
has been connected and exploited this property to determine optimum
damping for these systems. His approach is a generalization of the
methods of Den Hartog [1,2) and Lewis {3). He considers the
vibration velocity at one point of a lirear system resulting from a
sinusoidal force at another poirt. Let the force applied at a point
1 be P and v_. be the velocity at the same point. Suppose a damper
with damping constant ¢ is applied across points with relative
velocity v_ and let the unknown vibration velocity at the point of

interest be va. Plunkett shows that

ve 1+ jbe (19)

= b
J= | + jbsc

|

and notes that equation (19) has the same form as Den Hartog's
equation (3). Thus when bz/b = 1, the ratio v_/F_ is independent
of ¢ and has the invariant points property describéd above in
coniunction with the conventional dynamic vibration absorber. The
value of ¢ that gives a zero slope of the amplitude |v_/FP_J with
respect to frequency w at the invariant value of Ilv_/FP | is an
optimum value for c. Henney and Raney (12] applied "a similar
technique to optimize damping for vibrating uniform beams and
studied the sensitivity of maximum displacement response to
deviation from optimum damping.

Snowdon {13} ,{14) described how absorbers could reduce the
force transmitted to the terminations of undamped cantilever beams at
the resonant freguencies of beam vibration. The systems under
consideration are shown in Figure 7. The force transmissibility T
across the beam is defined as follows




T = 'FT/FOI (20)

where F_ is the force transmitted to the fixed end and P is the applied
force. When a single absorber is used. as in Figures 7a°and 7b,
essentially the same procedure as that used for the conventional
absorber is applicable. The fixed points are located by comparing
transmissibility curves obtained for zero and infinite damping.

The frequency ratio is then chosen so that the fixed points lie on
transmissibility curve actually take the equal values of
transmigsibility at the fixed points. When two absorbers are applied
simultaneously to the beam, Figure 7c, Snowdon's approach is to
assign each absorber the values of optimum tuning and damping that
were determined when the absorber wiis attached, individually, to its
present position on the beam. Optimum supression of both the first
and the second beam resonances results from this procedure.

Jacquot and Foster ([15] considered an undamped single-degree-
of-freedom sysiem equipped with a damped cantilever beam serving as
a vibration absorber. The authors developed an approximate system
dynamics by an assumed modes approach retaining only one mode of the
beam. Since the resulting equations were of the form obtained for
the conventional absorber problem, the same tuning and damping
approach was applicable. Snowdon [16] analyzed platelike absorbers
attached either to a lumped mass-spring system or to a plate with
small internal damping and presented optimum design parameters in
graphical form.

Jacqguot [17] appended a discrete absorber with structural or
viscous damping to a beam, Figure 8. Using an assumed mode approach
as in [15], he derived an approximate frequency response given by

€ P (x) T2 A (21)
EIpAL A4 0+ T3+ pepila)) + T2

y(X,/\) =
where
2
L (c-.'/Bl YVPBJET

2 4)

T = (k/m)(pA/EIBI (22)

L = m/pAL

and 8., pi are the beam mode shapes and eigenvalues satisfyinag
i




Because the form of equation (21) is the same as that found in the
convesxional absorber broblem with the exception that i is replaced
by up (a), Jacquot was able to tune and damp to flatten the
fundamental resonance response using Den Hartog's procedure.

Warburton and Ayorinde {18) extended Jacquot's representative
mode method to plates and shells by dcfining appropriate effective
mass and stiffness for such elastic bocies. The accuracy of this
single~mode approximation was favorably affected if adijacent
resonant frequencies were well separated from the natural frequency
for which the absorber was being tuned and adversely affected as the
absorber size increased. 1In a companion paper [19), the authors
considered cylindrical shells as examples of dynamically complex
structures, for which the ratio of adjacent natural frequencies !
tends toward unity. They showed that as dynamic complexity {
increased optimum absorber parameters deviated from those calculated
for an equivalent single-degree-of-freedom system.

MULTIPARAMETER DESIGN BY NONLINEAR PROGRAMMING

McMunn and Plunkett {20] developed a computational method to
optimize multiple dampers for large mechanical systems. Damping was
defined to be optimum if the maximum response over a range of
excitation frequencies was minimized. The response function of
interest, for example

X 2
twe) = | 4| (24)
1
where xi is the displacement of the ith mass and Pi is the force on
the jth'mass, is first maximized with respect to excitation
frequency W using
af 221
- 25
20 =0 502 <O (25)
and then minimized with respect to the vector ¢ of damping values
mén f(w,c) : (26)

In fact. the minimization over ¢ also considers values of £

at W = 1, and w = 1_ if a finite frequency interval (N _.N_] is being

c°nsiderdh. Two multiple-deqree—of—freedom. multiple-dalpef

discrete systems and a column with complex modulus damping were e
studied as examples using this approach. A similar approach was —
adopted by Ng and Cunniff (21) who designed a three

degree—of-freedom isolation system and verified their results by
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experimental tests. In their formulation, the authors define a
primitive function

e

. - x
12 = el el (27)

where * denotes complex conjugate transpose,
2 .
P=-0M+ jwC + K (28)

and f is the force vector. Their first step is to minimize
over damping variables the primitive function maximized over freaquency

. .2
mip max Ix'! (29)

They repeat this procedure until an optimum is reached

2 n 2
| = i
x'opt m:g m:g x| (30)

Dale and Cohen [22] extended the method of McMunn and plunkett
to continuous systems whose steady-state equations of motion could be
reduced to a set of ordinary differential equations containing
spatial coordinates as independent variables. Both dissipative and
nondissipative design parameters were included.

Lunden [23) presented a nonlinear programming solution based on
a sequential unconstrained minimization technique to the problem of
determining a continuous damping distribution which minimizes the
maximum response of a vibrating beam over a specified frequency
interval. 1In a second paper ([24)., the author applied the same
approach to vibrating frames. 1In these references, the maximum
response F in the frequency interval studied is written as

Pen®in®) = pax £(n%2%,0) (31)

where nd denotes distributed structural damping and ns denotes the
structural damping constants for discrete springs in the

system. An exact displacement method is used with hysteretic
damping introduced by the loss factor 7 diving a complex bending
stiffness EI(1 + jnd). The 4 x 4 stiffness matrix for a beam

element then takes the form

E = EI(L + 379)K x (32)

where K is a 4 x 4 matrix of transcendental functions of frequency.




Kitis [25] utilizes structural reanalysis and modal techniques
with nonlinear progaramming to make tractable problems in which the
systems under consideration contain a large number of degrees of
freedom. The repetitive computations of response required in the
nonlinear programming portion of the optimaldesiagn are carried out
using efficient reanalysis methods or condensed eigenproblem
solutions so that computation time in the structural analysis phase
of the design is reduced.

IMPEDANCE MATCHING

The progressive wave solution to the wave equation for
continuous chain-like systems has been used to minimize vibratory
response over a frequency range by means of "impedance matching".
To illustrate the basic idea of this technique consider the rod
shown in Figure 9, [14). Designating the displacement at any point
x by £, the wave equation may be written as

aze | 2 ‘
axz v né-= 0 (33
where
2
n’ -("g— (34)

If the end of the rod at x = 0 is subjected to a sinusoidally
varying force Po. then the driving point impendance zo is given by

Z, = L = ._fi_ (35)
(JE/at), ., JjwE(x=0)
Snowdon (14] shows that the impedance zo defined in equation
{(35), may be written as
/- Re’?
Z, = A/pE —— 36
° e | +Re’? (36)
where RejP describes the relative magnitude of and the phase
difference between the incident and the reflected waves. The
characteristic impedance zc is defined as the impedance of an
infinitely long rod in whicﬂ reflections ‘do not occur, the value of
zch is obtained from eguation (36) by equating R to zero
A = AYPE (37)

ch




A matched condition will occur if a damper of dampina constant 2

is attached to the rod at x = 0. This attachment causes the ratgo R
of reflected to incident wave to be zero so that no vibration
response buildup due to reflected waves is possible. This idea has
been applied to shafts on supports [26)]. Here the dynamic response is
expressed in progressive wave form like electrical response waves in
transmisison line theory. Waveforms for a uniform shaft flexibly
supported on two rotational and translational mass-spring—damper
units at the ends and one such unit in the interior are obtained.
The terminating impedance is made equal to the characteristic
impedance of the shaft to obtain a matched condition.

LIMITING PERFORMANCE METHODS

A limiting performance approach was applied in Refs. (27] and
(28] to the optimal design of vibratory systems over a frequency
range. In this approach, instead of fixing the desiagn configuration
at the outset, those parts of the system to be designed are replaced
by control forces. Then, for a selected cost function and design
constraint the absolute optimal performance of the system is
computed by solving an optimization problem in which the control
forces are unknowns. The solution is called the limiting
performance of the system. After the limiting performance
characteristics have been found, the designer can choose a
prospective configuration for the part of the system to be designed
and apply parameter identification techniques to find optimum design
variable values so that the designed system responds as closely as
possible to the limiting performance response. The limiting
performance characteristics are found by linear programming and
parameter identification can be accomplished by such curve fitting
techniques as least squares. This two-stage procedure has been
demonstrated for the optimal design of rotor suspension systems in

(273.

BOOKS AND MONOGRAPHS

The book by Haug and Arora [10] contains considerable material
applicable to frequency response shaping, although specialized
aspects are not treated in detail. Two other useful references are
the monograph by Sevin and Pilkey [28]) and the bocx by Snowdon [14).
Sevin and Pilkey present an introduction to the subiject and a
summary of the state—of-the art up to 1971. Snowdon's book contains
a wealth of information on vibration absorbers and reduction of beam
vibrations.
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Figure 1. A Mass-Spring System with a Conventional
Dynamic Vibration Absorber
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Figure 2. Two-Mass System with Tuned Damper
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Figure 3. Transmissibility of the Three-Element
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OPTIMAL VIBRATION REDUCTION OVER A FREQUENCY RANGE

Abstract. This is a review of optimal vibration reduction
techniques for systems subject to harmonic excitation over a
frequency range. Only passive means of control are considered. The
objective functions used for optimization are restricted to those
which relate directly to some measure of frequency response. Otherx
common optimization goals such as weight minimization with response
constraints are not included in this survey.

CONVENTIONAL DYNAMIC VIBRATION ABSORBER

The simplest device used to attenuate the steady-state
vibration of a mechanical system over a frequency range is the
conventional dynamic absorber. 1In the classical analysis,the main
gystem is modelled as a mass resonating on a spring (Figure 1). The
absorber is tuned to resonate such that the motion if its mass m2
becomes relatively large and the motion of the main mass m_ is
H minimized. The first analysis of the absorber is usually attributed

to Ormondroyd and Den Hartog [1]. A detailed discussion of optimal
tuning and damping parameters is given in Den Hartog's book {2]. To
write the equations of motion in a dimensionless form, the
following symbols are introduced

xst - rlk1 = gtatic displacement of main mass produced by a
force F
L= mzlm1 = mass ratio = absorber mass/main mass

Qﬁ- (kllml)l/z = uncoupled natural frequency of main svstem
wn - (kzlmz)llz = uncoupled natural freqguency of damper system

(1)
f = wn,Qh = ratio of natural frequencies
g= u/Qn = ratio of the exciting frequency to the
uncoupled natural frequency of main system
Cc - 2m29n = critical damping
£ = czlcc = damping ratio
z, = xi'xst' (i = 1,2) = displacement ratio
with this notation the equations of motion in the frequency
domain | may be written
(1 - gz)z + ufz(z -2,) + j2ukg(z, - 2,) = 1
1 1 2 1 2
(2)

2 2
-9z, + £ (22 zl) + ng((z2 zl) 0




L

which gives

2} " Cc + j¢p (3)
where
_fZ_gZ
B = 2g

(4)

2
¢ = -ut2g? + (g% - 1g? - £2

2
2g(1 - gz - 49)

If A/C = B/D, then zl becomes equal to A/C which is independent of
damping £. For fixed i and £, the condition A/C = B/D yields a
quadratic equation in g2 the two roots of which are the frequencies
9,+9, where the amplitude lzll of the main mass is independent of
damping. The points (gl,lzl(gl)!) and (gz,lzl(gz)l) on the frequency
response curve 'zl(g)' are called fixed points or invariant points.
Den Hartog optimizes absorber performance by first choosing £ = wn/ n

(tuning) so that the fixed points are adjusted to equal height and

then finding the value of { (optimum damping) to make the frequency
responge curve pass through one of the fixed points with a horizontal
tangent. His result for optimum tuning is

—1
f-1+.u. (5)

To find optimum damping for fixed i, substitute equation (5) into
equation (3), find the derivative of lz | with respect to g, then
evaluate at one of the fixed points, say g_, and eguate the result
to zero. From the equation thus obtained, the damping ratio may be
found as

2 _ w3 - Nu(p + 2) ‘
8(1 + u)3 (6)

*w

Oon the other hand. if the fixed point chosen is the one at g,, the
resulting damping ratio is given by -

2 (3 % Ju/fg + 23))
8(1 + p)3 7




Den Hartog recommends the use of the average value

2 —3u

TS IRY 8

EXTENSIONS OF THE CONVENTIONAL DYNAMIC ABSORBER

Lewis [3) extended this optimization procedure to multiple
degree-of-freedom, discrete, undamped systems to which a
conventional viscous vibration absorber is attached. Por such a
system with N masses, Lewis proves the existence of 2N-2 fixed
points. Thus, if the designer selects a resonant peak of primary
interest, the adijacent invariant points in the vicinity of this peak
can be adjusted as described above to obtain optimum tuning and
damping. As a particular case, Lewis analyzes the two-mass system
shown in Figure 2 and shows that the invariant points occur at the
frequencies

wz ) K(Ml + %2 + m) , KVZMlMZm(@l + M2 + m) %)
a,b Ml(M2 + m) 2M1M2(M2 + m)

with optimum tuning given by

2
K _ m{2M1§27+ 2M2 + ZMZm - Mlm) (10)
2
k ZMl(MZ + m)
and optimum damping by
2 3
cz K(8MlM2 + 8M2 + 8M2m - qlm)m L
3
4(M2 + m) (Ml + MZ + m)

snowdon (4] modified the conventional absorber by adding a spring
in series with the damper and showed that the resulting device, called
a three-element dynamic absorber, active through a greater frequency
range, reduced transmissibility (absolute value of the ratio of main
mass displacement to the prescribed displacement of a  foundation
attached to the main mass by a spring ) more effectively at the center
of this range. 1In the same paper, Snowdon introduced dual absorbers
to create a pronounced trough in the transmissibility curve while
avoiding the two large compensating resonant peaks that appear in the
transmissibility curve of the single absorber. Snowdon attaches these
absorbers to an undamped single degree—of-freedom system and provides
design information for them in graphical form. Two of his curves have
been reproduced here to show the changes in transmissibility (Figures
3 and 4).




Randall et. al. (5] provided optimum absorber desian curves for
primary svstems with damping, (Figure 5). They proved that once
damping is introduced into the main system, invariant points no
longer exist. Defining a performance measure G by

G = mgx lxl(w)l (12)

they used a numerical search to compute tuning and damping parameters
that minimize G. Soom and Lee {6) solved the same problem by
nonlinear programming and investigated the possibility of using
nonlinear springs to improve broad band response. They also tried
several different obijective functions, for example

2
Gl 5(lxl(w) - 11) for w such that lxl(w)l > 1

G, = msx(wlxl(w)l)
(13)
2
G, = Lix_ (w)l
w1

L wix (w)'z
W 1l

€4

Nonlinearities have also been treated bv Roberson {7) and Arnold
[8). Roberson considered the system shown in Figure 6 where the
spring between the masses M_ and M_ is nonlinear. 1Its load-
deflection curve is the sum of a linear and a cubic term. Since the
absorber is undamped in this case, its effectiveness is limited to a
small frequency range. Roberson's synthesis criterion is the
maximization of this suppression band. Aarnold (8) studied the same
system as Roberson but set ¢ = 0. He provides frquency response
curves of the system for hardening and softening coupling springs as
well as for a softening spring designed according to Roberson's
optimum system-parameter specifications. 1In both (7] and [8] the
restoring force in the nonlinear spring as a function of spring
extension is taken of the form

2.3
R(X) = c(x = po x7) (14)
where the plus sign indicates a hardening spring characteristic and
the minus sign indicates a softening one.
Kwak et. al. [9) and Haug and Arora [10) used a steepest

descent algorithm to solve the classical absorber problem over a
finite frequency range. Their objective function is

C = a?&ib Izl(w)l (15)




where z_is as defined in equation (1) and the frequencv interval
of interest is ([a,b). They minimize G subject to the constraints

X ~- X
223%p | —2—1
Xy

< Qmax (16)

< f <
fMIN £ fMAX (17)

€ £ < ¢
. *MAX (18)

£

MIN
where the notation is as in egquation (1). They showed that for
certain finite frequency intexrvals, designs superior to Den Hartog's
infinite frequency range optimum may be found.

SYSTEMS WITH CONTINUOUS MEMBERS

Plunkett (11) proved the existence of invariant points for
undamped continuous systems to which a single discrete dampex
has been connected and exploited this property to determine optimum
damping for these systems. His approach is a generalization of the
methods of Den Hartog [1,2] and Lewis [3). He considers the
vibration velocity at one point of a linear system resulting from a
sinusoidal force at another point. Let the force applied at a point
1 be P. and v_ be the velocity at the same point. Suppose a damper
with damping Constant ¢ is applied across points with relative
velocity v. and let the unknown vibration velocity at the point of
interest be v3. Plunkett shows that

1+ ibe (19)

= ;b
S / +jb3C

A

and notes that equation (19) has the same form as Den Hartog's
equation (3). Thus when b_/b_ = 1. the ratio v_/f. is independent
of ¢ and has the invariant points property describéd above in
conjunction with the conventional dynamic vibration absorber. The
value of ¢ that gives a zero slope of the amplitude lv_ /P | with
respect to frequency w at the invariant value of Iv_/F | 1is an
optimum value for c. Benney and Raney [12]) applied’a similar
technique to optimize damping for vibrating uniform beams and
studied the sensitivity of maximum displacement response to
deviation from optimum damping.

Snowdon [13) ,[14) described how absorbers could reduce the
force transmitted to the terminations of undamped cantilever beams at
the resonant frequencies of beam vibration. The systems under
consideration are shown in Piqure 7. The force transmissibility T
across the beam is defined as follows




- )
T Fo/F (20)

where P_ is the force transmitted to the fixed end and P_ is the applied
force. When a single absorber is used, as in Figures 7a and 7b,
easentially the same procedure as that used for the conventional
absorber is applicable. The fixed points are located by comparing
transmigsibility curves obtained for zero and infinite damping.

The frequency ratio is then chosen so that the fixed points lie on
transmissibility curve actually take the equal values of
transmissibility at the fixed points. When two absorbers are applied
simultaneously to the beam, Figure 7c¢., Snowdon's approach is to
assign each absorber the values of optimum tuning and damping that
were determined when the absorber was attached. individually, to its
present position on the beam. Optimum supression of both the first
and the second beam resonances results from this procedure.

Jacquot and Foster ([15] considered an undamped single-degree-
of-freedom gsystem equipped with a damped cantilever beam serving as
a vibration absorber. The authors developed an approximate system
dynamics by an assumed modes approach retaining only one mode of the
beam. Since the resulting equations were of the form obtained for
the conventional absorber problem, the same tuning and damping
approach was applicable. Snowdon [16] analyzed platelike absorbers
attached either to a lumped mass—-spring system or to a plate with
small internal damping and presented optimum design parameters in
graphical form.

Jacquot [17) appended a discrete absorber with structural or
viscous damping to a beam, Figure 8. Using an assumed mode approach
as in [15), he derived an approximate frequency response given by

€, P (x) T:- A (21)

YOA) = Crgal R R(ie TH0v @) + T

where

A = (w8, ) vERTET

TZ - (k/m)(pA/EIBl4) (22)
& = m/pAL
and pi, pi are the beam mode shapes and eigenvalues satisfyina
4
do
—k
It B.P, (23)




Because the form of egquation (21) is the same as that found in the
convezﬁional absorber problem with the exception that u is replaced
by up-(a), Jacquot was able to tune and damp to flatten the
fundamental resonance response using Den Bartog's procedure.

Warburton and Ayorinde (18] extended Jacquot's representative
mode method to plates and shells by defining appropriate effective
mass and stiffness for such elastic bodies. The accuracy of this
single~mode appbroximation was favorably affected if adjacent
resonant frequencies were well separated from the natural frequency
for which the absorber was being tuned and adversely affected as the
absorber size increased. 1In a companion paper {19}, the authors
considered cylindrical shells as examples of dynamically complex
structures, for which the ratio of adjacent natural frequencies
tends toward unity. They showed that as dynamic complexity
increased optimum absorber parameters deviated from those calculated
for an equivalent single-degree-of-freedom system.

MULTIPARAMETER DESIGN BY NONLINEAR PROGRAMMING

McMunn and Plunkett {20} developed a computational method to
optimize multiple dampers for large mechanical systems. Damping was
defined to be optimum if the maximum response over a range of
excitation- frequencies was minimized. The response function of
interest, for example

two - | 2 [ (24)
3

where x. is the displacement of the ith mass and Pi is the force on
the jth mass, is first maximized with respect to excitation
frequency w using

af a2f

- 25
w 0 w2 (0 (25)
and then minimized with respect to the vector ¢ of damping values

mci:n f(w,c) : (26)

In fact, the minimization over ¢ also considers values of £

at w =N, and w = N_ if a finite frequency interval [N_.N_) is being
considerdh. Two multiple-degree-of—freedom. multiple—daﬂpe

discrete systems and a column with complex modulus damping were
studied as examples using this approach. A similar approach was
adopted by Ng and Cunniff (21] who designed a three

degree—of-freedom isolation system and verified their results by




experimental tests. 1In their formulation, the authors define a
primitive function

- - k
g1 = e teye e (27)

where * denotes complex coniugate transpose,
2 .
P=-wM+ jwC + K (28)

and f is the force vector. Their first step is to minimize
over damping variables the primitive function maximized over frequency

. 2
még max ix'! (29)

They repeat this procedure until an optimum is reached

2 n, 2
| - i
3! e min max Ix | (30)

Dale and Cohen {22] extended the method of McMunn and plunkett
to continuous gsystems whoge steady-state equations of motion could be
reduced to a set of oxdinary differential equations containing
spatial coordinates as independent variables. Both dissipative and
nondissipative design parameters were included.

Lunden (23] presented a nonlinear programming solution based on
a sequential unconstrained minimization technique to the problem of
determining a continuous damping distribution which minimizes the
maximum response of a vibrating beam over a specified frequency
interval. 1In a gsecond paper {24], the author applied the same
approach to vibrating frames. 1In these references, the maximum
response F in the frequency interval studied is written as

F(nd.ns) = JDa%, f(nd,ns.w) (31)

where nd denotes distributed sttuctuﬁal damping and ns denotes the
structural damping constants for discrete springs in the

system. An exact displacement method is used with hysteretic
damping introduced by the loss factor 7 giving a complex bending

stiffness EI(1 + jnd\. The 4 x 4 stiffness matrix for a beam
element then takes the form

F = EI(1 + 379)K x (32)

where K is a 4 x 4 matrix of transcendental functions of frequency.




Kitis {25) utilizes structural reanalysis and modal techniques
with nonlinear programming to make tractable problems in which the
systems under consideration contain a large number of degrees of
freedom. The repetitive computations of response required in the
nonlinear programming portion of the optimaldesiagn are carried out
using efficient reanalysis methods or condensed eigenproblem
solutions so that computation time in the structural analysis phase
of the design is reduced.

IMPEDANCE MATCHING

The progressive wave solution to the wave equation for
continuous chain-like systems has been used to minimize vibratory
response over a frequency range by means of “impedance matching®.
To illustrate the basic idea of this technigue consider the rod
shown in Figure 9, {14). Designating the displacement at any point
x by £, the wave equation may be written as

2
2L 2% -0 (33)
9x2
where
) 2
n2 - put (34)

If the end of the rod at x = 0 is subjected to a sinusoidally
varying force Fo. then the driving point impendance zo is given by

F.
Z, =2 = (35)
(PE/3t)ynp  jewE(x=0)
Snowdon [14] shows that the impedance zo defined in equation
(35), may be written as
° e | +Re'? (36)
where Rejp describes the relative maanitude of and the phase
difference between the incident and the reflected waves. The
characteristic impedance zc is defined as the impedance of an
infinitely long rod in which reflections do not occur, the value of
zch is obtained from eqguation (36) by equating R to zero
2z = AYPE (37)

ch




A matched condition will occur if a damper of damping constant Z

is attached to the rod at x = 0. This attachment causes the ratio R
of reflected to incident wave to be zero so that no vibration
response buildup due to reflected waves is possible. This idea has
been applied to shafts on supports [26]}. Here the dynamic response is
expressed in progressive wave form like electrical response waves in
transmisison line theory. Waveforms for a uniform shaft flexibly
supported on two rotational and translational mass-spring-damper
units at the ends and one such unit in the interior are obtained.
The terminating impedance is made equal to the characteristic
impedance of the shaft to obtain a matched condition.

LIMITING PERFORMANCE METHODS

A limiting performance approach was applied in Refs. (27] and
(28) to the optimal design of vibratory systems over a frequency
range. In this approach, instead of fixing the design configuration
at the outset, those parts of the system to be designed are replaced
by control forces. Then, for a selected cost function and design
constraint the absolute optimal performance of the system is
computed by solving an optimization problem in which the control
forces are unknowns. The solution is called the limiting
performance of the system. After the limiting performance
characteristics have been found, the designer can choose a
prospective configquration for the part of the system to be designed
and apply parameter identification techniques to find optimum design
variable values so that the designed system responds as closely as
possible to the limiting performance response. The limiting
performance characteristics are found by linear programming and
parameter identificaticon can be accomplished by such curve fitting
techniques as least squares. This two-stage procedure has been
demonstrated for the optimal design of rotor suspension systems in
(z73.

BOOKS AND MONOGRAPHS

The book by Haug and Arora [10]) contains considerable material
applicable to frequency response shaping, although specialized
aspects are not treated in detail. Two other useful references are
the monograph by Sevin and Pilkey [28] and the book by Snowdon {14).
Sevin and Pilkey present an introduction to the subject and a
summary of the state-of-the art up to 1971. Snowdon's book contains
a wealth of information on vibration absorbers and reduction of beam
vibrations.
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Figure 1. A Mass-Spring System with a Conventional

Dynamic Vibration Absorber
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Figqure 2.

Two-Mass System with Tuned Damper
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Figure 3. Transmissibility of the Three-Element
Dynamic Absorber

Figure 4. Transmissibility of the Dual
Absorber
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Ka = absorber spring constant

na = absorber damping constant

Ma = absorber mass

Z = absorber impedance

Figure 7. Dynamic Absorbers Attached to a Cantilever

Beam Excited by a Sinusoidally Varying Force
at its Free End
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Figure 8. Euler-Bernoulli Beam with Dynamic
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